quarta-feira, 29 de fevereiro de 2012

Poliedros de Platão.

É comum ouvir um professor de matemática falar “A geometria é uma parte importante da matemática...” aos alunos no começo da aula introdutória a este setor. Mas a pergunta que cabe é: e qual parte não é importante? 

Não pretendo com este artigo explicar a importância da geometria ou da matemática para a vida de um aluno ou de uma pessoa que nem sabe o que significa um poliedro. Meu objetivo é mostrar uma nova perspectiva para aqueles que possuem dificuldade em visualizar estruturas tridimensionais descritas em poucas palavras nos enunciados dos variados exercícios.

Como o tema é extenso para um artigo somente, nesta etapa concentrarei meus esforços em poliedros apenas, com ênfase nos poliedros de Platão. Para tal, segue a definição: Poliedro é um sólido geométrico (região do espaço limitada por uma superfície fechada) cuja superfície é composta por um número finito de faces, no qual cada uma delas é um polígono.

Os poliedros são divididos em duas categorias: convexos e não convexos.
Figura 1: Poliedro não-convexo e poliedro convexo.

Como as figuras acima exemplificam, um poliedro não convexo é aquele onde se cria, no mínimo, uma reta (ou um plano) que, ao atravessá-lo, sai e entra de volta no mesmo. Tal reta ou plano com estas características (sair e entrar) não é obtida para um poliedro convexo, ou seja, ela entra e sai do objeto apenas uma vez. Por este motivo, os convexos, como os chamaremos, são mais fáceis de estudar e entender.

Devido a sua simplicidade, em termos conceituais, os poliedros convexos são conhecidos a um bom tempo pela humanidade. Há evidências de que os Povos Neolíticos que viveram na Escócia tenham esculpidos alguns destes sólidos 1000 anos antes. Alguns destes modelos, conforme apresentamos na figura 2 ― Modelos Neolíticos dos Sólidos Platônicos, encontram-se no Museu Ashmolean em Oxford, Reino Unido.

Figura 2: Modelos neolíticos dos sólidos platônicos.

Platão foi o primeiro a demonstrar que existem apenas cinco poliedros regulares: o cubo ou hexaedro (seis faces quadradas), o tetraedro (quatro faces triangulares) o octaedro (oito faces triangulares), o dodecaedro (doze faces pentagonais) e o icosaedro (vinte faces triangulares). Ele e seus seguidores estudaram esses sólidos com tal intensidade, que eles se tornaram conhecidos como “poliedros de Platão”. 

Suas características são as seguintes: 

· são convexos; 
· têm o mesmo número de lados em todas as faces; 
· em todos os vértices chega o mesmo número de arestas. 

Abaixo seguem os cinco:
Figura 3: Poliedros de Platão.

Percebe-se, pela figura acima, como é estranha a representação de objetos tridimensionais no plano. Mesmo com a ajuda das linhas contínuas e pontilhadas o dodecaedro e o icosaedro são confusos de se compreender. Como não se encontram estes poliedros à venda em qualquer papelaria, a melhor forma de contornar essa dificuldade é construindo-os com linha e canudos de refrigerante. Para esta tarefa, apenas uma quantidade razoável de linha, tesoura, tempo e paciência são necessários. Uma vez construídos, pode-se contar e verificar realmente o número de faces, arestas e vértices neles contidos.

Vejamos abaixo como ficam os poliedros por esse ponto de vista.

O Tetraedro

Figura 4: Tetraedro Regular.

O tetraedro é constituído por um total de seis arestas (canudos), quatro vértices e quatro faces. Monta-se ele com três arestas concorrendo em cada vértice, ou seja, costurando três canudos por vez e formando triângulos, que serão equiláteros. 

A melhor observação dessa montagem pode nos ajudar com uma brincadeira um tanto antiga para aqueles que gostam de quebra-cabeça ou puzzles matemáticos: 

Uma pessoa lhe entrega seis palitos de mesmo comprimento e pede que forme quatro triângulos de mesmo tamanho. Você então monta a figura abaixo:

Muito bem, sem especificar quais tipos de triângulos seriam, quatro triângulos retângulos resolvem o problema. 

Eis que a pessoa lhe pede que monte quatro triângulos eqüiláteros com os mesmos seis palitos. Você responde com:

 ou 

Ótima resposta, você não só mostrou que é possível como também apresentou duas soluções distintas para o problema. Agora o seu desafiante exige que você faça os quatro triângulos equiláteros com lados de mesma medida que os comprimentos dos palitos. 

A única solução possível para o problema é o tetraedro na figura 4. 

O Cubo ou Hexaedro

Figura 5: Cubo ou hexaedro regular de aço com as arestas em solda.

Figura 6: Cubo ou hexaedro regular de canudos com as arestas costuradas.

O cubo é constituído de doze arestas, oito vértices e seis faces quadradas. É importante ressaltar que, na confecção dele, deve-se montar um ou dois tetraedros simultaneamente. Pois, com três arestas concorrendo em cada vértice, a estrutura parece “sambar” e pode não ficar com ângulos retos entre as faces e entre as arestas. Para contornar a situação basta medir o comprimento do canudo e dividi-lo pela raiz quadrada de dois. Assim as arestas (seis ao todo) do tetraedro serão as diagonais de cada uma das faces (também seis) do cubo. O maior cuidado é o de costurar em três canudos pretos e três brancos.

O Octaedro

Figura 7: Octaedro regular de aço.

Com as mesmas doze arestas que o cubo, mas com seis vértices e oito faces, o octaedro apresenta uma característica peculiar em relação ao hexaedro. Se unidos os pontos centrais de suas respectivas faces, a partir de um dos dois, forma-se o outro, ou seja, é possível inserir um cubo dentro de um octaedro e vice-versa. Outro detalhe da construção dele é a respeito de seus vértices, em cada um deles são costurados quatro canudos, uma vez que são quatro arestas concorrendo para o mesmo vértice. 

O Dodecaedro

Figura 8: Dodecaedro regular de aço.

Figura 9: Dodecaedro regular de canudos com arestas costuradas.

Este sim constituirá um desafio àqueles que planejarem montar esses poliedros. Com trinta arestas (canudos brancos), vinte vértices e doze faces, o dodecaedro possui um problema semelhante ao do cubo, são sempre três arestas concorrendo para o mesmo vértice. Dessa forma, a estrutura apenas não é capaz de se sustentar sem a ajuda de algum suporte. Contorna-se este problema costurando, em cada vértice, três canudos a mais, que serão a pirâmides de base pentagonal observadas em cada face. Mas fique atento, resolver o problema não implica em ter menos trabalho, essa solução implica em 60 canudos a mais na confecção. 

O Icosaedro

Figura 10: Icosaedro regular de aço.

Formado também por trinta arestas, mas com doze vértices e vinte faces, o icosaedro apresenta com o dodecaedro a tal relação peculiar anteriormente citada entre cubo e octaedro. Quer dizer, é possível inserir um dodecaedro apenas conectando os centros das faces do icosaedro e a recíproca é verdadeira. A vantagem dele é que cinco arestas concorrem para cada vértice, assim a estrutura se mantém facilmente. O único perigo é a confusão causada na cabeça de quem tentar montá-lo sem a devida atenção. 

Conclusão.

De um modo geral, a construção dessas estruturas facilita uma melhor visualização e compreensão dos elementos básicos das geometrias plana e espacial e a confecção dos mesmos é uma atividade de entretenimento atraente para a maioria dos alunos.

É necessário ressaltar que, apenas vistos em fotos, os poliedros de maior número de faces podem aparentar tão confusos quanto desenhos em perspectiva no plano. A real noção de como cada um deles é só vem com a respectiva construção.

Fica agora uma ideia muito citada em exercícios da área e pouco entendida pelos estudantes. O que acontecerá com cada um dos poliedros de Platão se cortamos pirâmides a uma distância de cada um de seus vértices que seja igual a um terço das medidas de suas arestas? Visualizar e determinar quantidades de arestas, vértices e faces dos poliedros resultantes é um verdadeiro desafio. Mas este será abordado no próximo artigo.

Nenhum comentário:

Postar um comentário

Devido a brincadeiras de mal gosto e comentários trolls, os comentários serão moderados a partir de agora. Agradeço a compreensão.